Práctica 20: método de Gauss

El método de Gauss consiste en transformar un sistema de ecuaciones lineal en otro escalonado.

Por ejemplo:

Captura de pantalla 2017-05-15 a las 17.57.20

El sistema transformado en matriz:

Captura de pantalla 2017-05-15 a las 17.57.25

Si te fijas, ya podemos despejar directamente una de las incógnitas. Por tanto, este tipo de sistemas es muy fácil de resolver obteniendo el valor de las incógnitas de abajo hacia arriba. De esta manera, podemos ir sustituyendo los valores obtenidos en las anteriores.

z=2

Sustituimos el valor de “z” en la segunda ecuación y obtenemos el valor de “y”:

y+3.(2)=8;

 y=8-6=2
y=+2

 

Sustituimos el valor de “z” e “y” en la primera ecuación y obtenemos “x”:

 y=2

x+(2)+3.(2)=-8;

 x=-16

Si nuestro sistema no es un sistema escalonado, lo podemos resolver mediante el método de Gauss. El método consiste en  “hacemos cero”, es decir, sometemos a las ecuaciones a transformaciones elementales:

  • Multiplicamos por un número distinto de cero.
  • Sumar una ecuación a otra multiplicada por un número.

Para trabajar mejor utilizamos sólo los números (coeficientes y término independiente) y trabajamos con una estructura de matriz.

Ejemplo:

Captura de pantalla 2017-05-15 a las 17.59.15

Utilizamos los coeficientes y los términos independientes y realizamos una matriz:

Captura de pantalla 2017-05-15 a las 17.59.49

Necesitamos hacer ceros en los números destacados en la matriz anterior.

Primeras transformaciones, deseamos realizar los ceros de la primera columna:

Primer paso, transformar la segunda fila,

  1. Fila uno multiplicada por -3

-3.(+1 +1 +1 +2)=-3 -3 -3 -6

  1. Le sumo la fila 2.

Captura de pantalla 2017-05-15 a las 18.01.00

Segundo paso, transformar la tercera fila,

 

  1. Fila uno multiplicada por +2.

+2.(+1 + 1+1 +2 )=+2 +2 +2 +4

 

  1. Le sumo la fila 3.

Captura de pantalla 2017-05-15 a las 18.02.02

Así, la matriz resultante sería:

Captura de pantalla 2017-05-15 a las 18.02.45

Segundas transformaciones, deseamos realizar el ceros de la segunda columna:

Para ello, sólo utilizamos la segunda y tercera fila:

  1. Fila uno se mantiene.
  2. Fila dos se multiplica por 3.

+3.(0 -5 -4 -2)=+0 -15 -12 -6

  1. Fila tres se multiplica por 5.

 

+5.(0 +3 +4 +6)=0 +15 +20 +30

  1. Sumo la fila dos y tres transformadas.

Captura de pantalla 2017-05-15 a las 18.04.38

De esta manera, el sistema resulta:

Captura de pantalla 2017-05-15 a las 18.05.20

Siendo la solución:

z=24/8=+3

z=+3

Sustituimos el valor de “z” en la segunda ecuación y obtenemos el valor de “y”:

-5y-4.3=-2
-5y=-2+12
y=+10/-5=-2

 y=-2

 

Sustituimos el valor de “z” e “y” en la primera ecuación y obtenemos “x”:

x+(-2)+3=+2

x=+2-3+2

x=+1

 

Puedes ver este ejemplo resuelto en el siguiente videotutorial:

 

Realiza ahora tú mismo estos dos ejercicios por el método de Gauss:

Captura de pantalla 2017-05-15 a las 18.06.28

Encuentra las soluciones en el pdf adjunto:

Método de Gauss. Ejercicios resueltos.ystp

Si tienes cualquier duda y quieres ponerte en contacto conmigo, puedes hacerlo escribiéndome a yosoytuprofe.miguel@gmail.com, o bien a través de mis perfiles en redes sociales (Facebook,Twitter,Instagram o Youtube).

Nos vemos en la siguiente clase.


portada_cuaderno_ecuaciones_2 funcioneslineales

Anuncios

Un comentario sobre “Práctica 20: método de Gauss

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s